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ABSTRACT : In the search for the factons contrnolling the enantiosefective protonation of eno-
Za%es of a-aminoacid denivatives, we report a new procedure allowing the use of various Ligands
of Lithium, involuing an amine exchange aftern the metalation step by LHMDS and prion to the
asymmetric protonation by means of a chiral acid. The stereoselectivity of this Last step was

affected by the Ligand exchange. In some cases, a higher e.e. was observed compared to the LDA
o LHMDS procedune.

During our studies on enantioselective protonations of lithium enolates of a-aminoacid
derivatives (1), the structure of the secondary lithium amide used for the metalation of the
racemic starting material has been shown to affect significantly the ratio of asymmetric
induction (1, 2). Here we wish to report a new procedure involving an amine exchange which opens
up a route for the use of various Tigands of lithium, and consequently modifies the stereo-
selectivity of the asymmetric step.

Thus, the deracemization (3) was carried out on N-benzylidene methyl esters of racemic
aminoacids, using the 1ithium amide of hexamethyldisilazane (LHMDS) as base and (2R,3R) 0,0-di-

pivaloyltartaric acid (DPTA) as chiral proton donor (4) (Scheme 1, path a) :
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TABLE 1 : VALIDITY OF THE HMDS-AMINE EXCHANGE PROCEDURE FOR THE a
DERACEMIZATION OF ALANINE, VALINE and PHENYLGLYCINE

Entry R Lithium amide Added amine e.e% (S) Yield % Ref.
1 Me LHMDS - 36.5 ¢ 87 -
2 Ma LDA - 56 4 71 -
3 Me LHMDS Pr 56 4 85 -
4 ipr LHMDS - 34 bid 83 -
5 ipr LDA - 47 b5 79 -
6 ipr LHMDS iProNH(0.25 eq)® 47 D¢ 83 -
7 ipr LHMDS iPr Mi(1.4 eq) ¢ 46 ¢ 83 -
8 ipr LDA HMDS 46 04 80 -
9 Ph LHMDS - 51 4 80 -

10 Ph LDA . 50 4 80 1,2
11 Ph LHMDS 1Pr,H 50 ¢ 81 -
Ph. N d
12 Ph N~ - 70 84 1,2
N b

13 Ph LHMDS N 70 - -

a) Protonation of the resuliting enolate by means of (2R,3R) 0,0-dipivaloyliartaric acid (DPTA)
(3, 4]; b) Detenmined by HPLC on chiral column (PIRKLE HPLC £ype CSP (R} -N- (3,5-dinitro-
benzoyl) phenylglycine, hexane/dioxane = 98/2, 1.5 ml/mn; c) With nespect to 1; d) Deteamined
by polanimetry on amino ester hydrochlonides obtained by acidic hydrofysis of the deracemized
Schiff bases (8).

It was observed that for alanine and valine derivatives (R = Me and R = iPr), the asym-
metric induction was Tower than in the classical procedure using LDA as the base (Scheme 1,
path ¢ and Table 1, entries 1 and 2; 4 and 5). In the case of phenylglycine (R = Ph), similar
results were fortuitously observed with the two bases (entries 9 and 10). Moreover, an addi-
tional experiment was carried out as follows : after metalation by means of LHMDS, diisopro-
pylamine was added before the asymmetric protonation step : the optical enrichment of the
material recovered was then identical to that of the “"classical" experiment with LDA as the
base (Scheme 1, path b and Table 1, entries 2 and 3; 5 and 7). A reverse procedure, involving
metalation by means of LDA followed by addition of HMDS also gave the same result (entry 8).
Entries 12 and 13 describe a similar effect observed on phenylglycine derivative using a
double asymmetric induction with a secondary chiral amine.

Among the possible explanations of the observed results (5), we consider essentially
that the HMDS molecule Tiberated after metalation is a poor ligand of Tithium because of its
low basicity (6) and can thus be replaced by the added nucleophile (7). The enantioselective
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protonation of the resulting new solvated prochiral lithium enolate would obviously lead to
a different asymmetric induction.

To illustrate this possibility of Tithium ligand exchange, various primary, secondary
and tertiary amines were added after the LHMDS metalation step (Table 2 and Scheme 2) :
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Scheme 2 R = iPr; A'H = (2R,3R)DPTA

A higher deracemization ratio can be obtained with examples of each class of amines compared
to the experiments without an additional Tigand. In the case of ethylamines, the primary and
secondary amines afforded a significant increase of stereoselectivity, whereas the triethy-
Tamine caused a dramatic decrease of asymmetric induction.

Table 2 : DERACEMIZATION OF VALINE VIA HMDS-AMINE EXCHANGE PROCEDURE &

Entry Lithium amide Added amine e.e % (S) b
4 LHMDS - 34
14 LHMDS 1,3-propanediamine 49.5
15 LHMDS EtNH, (0.25 eq) © 53
16 LHMDS EtNH, (1.4 eq) © 55
17 LHMDS piperidine 50
18 LHMDS Et,NH 44

LiQ
19 LHMDS T 63.5
u COOLi
20 LHMDS Et,N 18
21 LHMDS sparteine 51

a, b, c] as in Table 1.
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It is noteworthy that this procedure avoids any addition reaction which could occur with
the corresponding lithium amide. Morever, the added ligand can act almost catalytically
(0.25 eg., entries 6 and 7; 15 and 16).

Studies are in progress.
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